Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Septiembre - Diciembre 2000 MA-2115

Práctica 2

Analizar la convergencia de las siguientes series:

1.1)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{1}{3^n} \right)$$

1.1)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{1}{3^n} \right)$$
 1.2) $\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln(\ln n)}$ 1.3) $\sum_{n=1}^{\infty} \sec \frac{1}{n}$

$$1.3) \quad \sum_{n=1}^{\infty} \operatorname{sen} \frac{1}{n}$$

2. 2.1)
$$\sum_{n=2}^{\infty} \frac{2^{n-2}}{(2-3a)^n}, \text{ con } a \in \mathbb{R}$$

$$2.3) \quad \sum_{k=1}^{\infty} \left(\sum_{n=2}^{\infty} \frac{1}{5^n} \right)^k$$

2.2)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{1}{n+1} - \frac{1}{n+2} \right)$$

Investigar si las siguientes afirmaciones son verdaderas o falsas. Si una afirmación es verdadera, demostrarla; en caso contrario, dar un contraejemplo.

3.1) Si
$$\sum_{n=1}^{\infty} a_n$$
 converge, y $a_n \geq 0 \ \forall_n$, entonces $\sum_{n=1}^{\infty} a_n^2$ converge

3.2) Si
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
 converge, entonces $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ convergen

3.3) Si
$$\sum_{n=1}^{\infty} a_n$$
 converge y $a_n \geq 0 \; \forall_n$, entonces $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converge

Determinar si la serie es absolutamente convergente, condicionalmente convergente o divergente

4.1)
$$-1 + \frac{4}{5} + \frac{9}{15} + \frac{16}{29} + \frac{25}{47} + \frac{36}{69} + \dots$$

$$+\frac{36}{69} + \dots$$
 4.5) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n n!}{n^n}$

$$4.2) \quad \sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^{n^2}$$

$$4.6) \sum_{n=1}^{\infty} ne^{-n}$$

4.3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \cos \left(\frac{\pi}{2} - \frac{k\pi}{n} \right) \text{ donde } k$$
 es un número real positivo

4.7)
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+2)(1+\ln n)}$$

4.4)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2n - 1}{n!}$$

Determinar los valores de p para los cuales la serie converge.

DPTO. DE MATEMATICAS MA-2115

$$5.1) \quad \sum_{n=0}^{\infty} \left(\sqrt{n^p + 1} - \sqrt{n^p} \right)$$

$$5.4) \quad \sum_{n=1}^{\infty} \frac{\ln n}{n^p}$$

5.2)
$$\sum_{n=3}^{\infty} \frac{1}{n \ln(n) (\ln(n))^p}$$

5.5)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^p}$$

5.3)
$$\sum_{n=2}^{\infty} \frac{1}{(n \ln(n))^p}$$

Determinar los valores de p para los cuales las series es absolutamente convergente, condicionalmente convergente y divergente.

6.1)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{(n+(-1)^n)^p}$$

$$6.2) \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$

- Mostrar que la serie $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} \dots$ converge y hallar una suma parcial que difiere de la suma de la serie en menos de 0.01
- Analizar la convergencia de las siguientes series:

$$8.1) \quad \sum_{n=1}^{\infty} \ln\left(n^{\frac{1}{n}}\right)$$

8.2)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - e^{-n^2}\right)$$
 8.3) $\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^{\ln(n)}}$

8.3)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^{\ln(n)}}$$

Analizar la convergencia de las siguientes series. Si una serie converge, hallar su límite.

$$9.1) \quad \sum_{n=1}^{\infty} \ln \left(\frac{n^2}{n^2 - 1} \right)$$

9.1)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{n^2 - 1} \right)$$
 9.2)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$
 9.3)
$$\sum_{n=1}^{\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)}$$

9.3)
$$\sum_{n=1}^{\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)}$$

- Investigar si las siguientes afirmaciones son verdaderas o falsas. Si una afirmación es verdadera, demostrarla; en caso contrario dar un contra ejemplo.
 - 10.1) Si $\sum_{n=1}^{\infty} a_n$ converge absolutamente, entonces $\sum_{n=1}^{\infty} \frac{a_n^2}{1+a_n^2}$ converge absolutamente.
 - 10.2) Si $\sum_{n=1}^{\infty}a_n$ converge absolutamente y $a_n \neq -1 \ \forall n$, entonces $\sum_{n=1}^{\infty}\frac{a_n}{1+a_n}$ converge absolutamente.
 - 10.3) Sean $a_n \ge 0$, $b_n > 0 \ \forall n$, $\frac{a_n}{5b_n} > 5 \ \forall n \ge 7$. Si $\sum b_n$ diverge, entonces $\sum a_n$ diverge.
- 11. Probar que las series $\frac{1}{2} \frac{2}{1+2^2} + \frac{3}{1+3^2} \frac{4}{1+4^2} + \dots$ converge y hallar la suma parcial que defiere de la suma de esta serie en menos de 0.001

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Septiembre - Diciembre 2000 MA-2115

Práctica de sucesiones

1. Investigue si las siguientes sucesiones son o no convergente. Si converge, calcule su límite

a)
$$a_n = \sqrt{n(n+2)} - n$$
, $a > 0$

b)
$$c_0 = 2$$
, $c_n = \frac{2nc_{n-1}}{1+n^2}$, si $n \ge 1$

2. Pruebe usando la definición de límite, la convergencia de las siguientes sucesiones:

$$a) \quad a_n = \frac{3n + 2 - \sin n}{n}$$

$$b) \quad b_n = \frac{n}{2n+1}$$

3. Calcule el $\lim_{n\to\infty} a_n$, si

a)
$$a_n = n^{\frac{1}{n}}$$

c)
$$a_{n+1} = \frac{1}{2} \left(a_n - \frac{1}{a_n} \right), \quad a_1 = 3$$

$$b) \quad a_n = \left(\sqrt{n+1} - \sqrt{n}\right)\sqrt{n+3}$$

$$d) \quad a_n = \frac{n^2}{2n+1} \operatorname{sen} \frac{\pi}{n}$$

4. Sean $\{a_n\}, \{b_n\}$, sucesiones, se supone $\{a_n\}$ acotada, (es decir, existe M>0 tal que $\forall n, |a_n|>M$) y $\lim_{n\to\infty}b_n=0$. Usar la definición de límite para probar que $\lim_{n\to\infty}a_nb_n=0$.

5. Analizar la convergencia de la sucesión en término general

a)
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{(2n)^n}$$

b)
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$$

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Septiembre - Diciembre 2002 MA-2115

Práctica 1

Investigue si las siguientes sucesiones son o no convergente. Si converge, calcule su límite

1.1)
$$a_n = \sqrt{n(n+2)} - n, \quad a > 0$$

1.6)
$$a_n = e^n 2(1-n)$$

1.2)
$$c_0 = 2$$
, $c_n = \frac{2nc_{n-1}}{1+n^2}$, si $n \ge 1$

1.7)
$$a_n \frac{n^2 + n - 1}{\sqrt{n^5 + 5n^3}}$$

1.3)
$$a_n = \frac{2n-1}{1+n}$$

1.8)
$$a_n = \frac{n-3}{3^n}$$

1.4)
$$a_n = \frac{n(-1)^n}{1+n}$$

1.9)
$$a_n = \frac{\ln(1+e^n)}{n}$$

$$1.5) \quad a_n = \frac{\cos(n\pi)}{n}$$

1.10)
$$a_n = \frac{1+2+3+\ldots+n}{n^2}$$

Pruebe, la convergencia de las siguientes sucesiones:

2.1)
$$a_n = \frac{3n + 2 - \sin n}{n}$$

2.2)
$$b_n = \frac{n}{2n+1}$$

Calcule el $\lim_{n\to\infty} a_n$, si

3.1)
$$a_n = n^{\frac{1}{n}}$$

3.3)
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) \quad a_1 = 3$$

3.2)
$$a_n = (\sqrt{n+1} - \sqrt{n})\sqrt{n+3}$$

3.4)
$$a_n = \frac{n^2}{2n+1} \operatorname{sen} \frac{\pi}{n}$$

Investigar la convergencia de la sucesión dada por la fórmula recursiva:

4.1)
$$a_n = \sqrt{2 + a_{n-1}}, \ a_1 = \sqrt{2}, \ n \ge 2.$$

4.2) $a_{n+1} = 1 + \frac{1}{2}a_n; \ a_1 = 1$

4.3)
$$a_{n+1} \left(a_n - \frac{2}{a_n} \right); \ a_1 = 2$$

4.2)
$$a_{n+1} = 1 + \frac{1}{2}a_n$$
; $a_1 = 1$

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Septiembre - Diciembre 2002 MA-2115

Práctica 2

Ejercicio de series

1. Determine si la serie infinita converge o diverge. Si es convergente calcule la suma.

Ejercicio	Respuesta	Ejercicio	Respuesta
$\sum_{n=1}^{\infty} \frac{3}{4^{n-1}}$	C. 4	$\sum_{n=1}^{\infty} \left(\frac{-1}{\sqrt{5}}\right)^{n-1}$	$C. \frac{\sqrt{5}}{\left(\sqrt{5}+1\right)}$
$\sum_{n=1}^{\infty} \frac{37}{(100)^n}$	C. 37/99	$\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^n}$	D.
$\sum_{n=1}^{\infty} (-1)^{n-1}$	D.	$\frac{1}{4.5} + \frac{1}{5.6} + \dots + \frac{1}{(n+3)(n+4)} + \dots$	C. $\frac{1}{4}$
$\frac{5}{1\cdot 2} + \frac{5}{2\cdot 3} + \dots + \frac{5}{n(n+1)} + \dots$	C. 5	$3 + \frac{3}{2} + \dots + \frac{3}{n} + \dots$	D. p
$\sum_{n=1}^{\infty} \frac{3n}{5n-1}$	D.	$\sum_{n=1}^{\infty} \left(\frac{1}{8^n} + \frac{1}{n(n+1)} \right)$	c. $\frac{8}{7}$

2. Determine si la serie converge o diverge

Ejercicio	Respuesta	Ejercicio	Respuesta
$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{e}}$	D.	$\sum_{n=1}^{\infty} \left(\frac{5}{n+2} - \frac{5}{n+3} \right)$	C.
$\sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^n + \left(\frac{2}{3} \right)^n \right)$	D.	$\sum_{n=1}^{\infty} n \operatorname{sen} \frac{1}{n}$	D.

3. Encuentre una fórmula para S_n y demuestre que la serie converge o diverge usando $\lim_{n \to \infty} S_n$

Ejercicio	Respuesta	Ejercicio	Respuesta
$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$	$S_n = \frac{1}{2} [1 - 1/(2n+1)] \text{ C. } 1/2$	$\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$	$S_n = -\ln(n+1), \ D$

4. Use el criterio de la integral para determinar si la serie converge o diverge

Ejercicio	Respuesta	Ejercicio	Respuesta
$\sum_{n=1}^{\infty} \frac{1}{(3+2n)^2}$	C.	$\sum_{n=1}^{\infty} \frac{\arctan}{1+n^2}$	C.
$\sum_{n=1}^{\infty} \frac{100^n}{n!}$	C.	$\sum_{n=1}^{\infty} \frac{n^n}{10^n}$	D.

DPTO. DE MATEMATICAS

MA-2115

Ejercicio	Respuesta	Ejercicio	Respuesta
$\sum_{n=1}^{\infty} \frac{n!}{e^n}$	D.	$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$	C.
$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$	C.	$\sum_{n=1}^{\infty} \frac{\ln n}{(1\cdot 01)^n}$	C.
$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2}$	C.	$\sum_{n=1}^{\infty} n \operatorname{tg} \frac{1}{n}$	D.

Universidad Simón Bolívar Departamento de matemáticas Puras y Aplicadas Enero-Marzo del 2011

NOMBRE:	
CARNET:	SEC:

1er. Parcial 2115 (50%) A

- 1-. (10puntos) Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadera Demuéstrelo si es falsa de un contraejemplo.
 - a) (5 puntos) Dada la serie $\sum a_n$, ξ será cierto que si y $\lim_{n\to\infty} a_n = 0$ entonces la serie es convergentes
 - b) (5 puntos) La sucesión $a_n = \{(e^n e^{-n})/(e^n + e^{-n})\}$ es convergente
- 2.- a) (6 puntos) Determine la convergencia condicional o absoluta de la serie.

$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{2n^3 + 1} - \sqrt{2n^3} \right)$$

- b) (6 puntos) Estudie la convergencia de la serie: $\sum_{n=1}^{\infty} \frac{2 + \text{sen}(n)}{\sqrt[3]{n^4 + 1}}$
- 3.- (14 puntos) Halle el conjunto de convergencia y su radio para la serie de potencias

$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n \, 3^n}$$

4.-(14 puntos) Resolver la ecuación diferencial $3(1+x^2)\frac{dy}{dx} = 2xy(y^3-1)$